11-‘!1--. p)
Vil .
\thluﬂ:ff';':"
c.*.ft” =%
R

‘g&
“

-

-
Tenam e W
o“ﬁ‘l\\\
@ °
0 |
O

waet
i
LTI R A

g
< "
Sl]

o)
(o]

secure!l’

1. Threat Modeling

"Plans are nothing. Planning is everything."

Threat Modeling is the activity of
analysing application designs, features
and business logic flows for security
issues that might affect the
confidentiality, integrity or availability of

systems or data. Threat modeling systems

early and often ensure there is less

likelihood of design related security flaws.
It reduces therisk of costly security issues

in production, supports compliance to
standards as ISO 27001:2022 and isalso a
great team activity.

A common process is to consider 4
questions when designing a system:
1. What are we talking about

2. What can go wrong

3. What are we going to do about it?
4. Did we do a good job?

Think about it: Would you drive a car
that hasnot been designed with safety in
mind? Would you use a medical device
where no one checked whether itissafe
to use? Would you feel well putting your
credit card details, health data or
personal information in a software that
has not considered security in its
planning stage?

secure

Planning & Design

What are we doing against bruteforce
and«credential stuffing attacks to
protect customer accounts?”

"Are-all.reléevantinterfaces
encryptedso personal
Information is'safe inltransit?"

"How do we handle
credentials?”

'Can this function-be
abused to send spam?"

Threat modeling comes in different flavors and with different
tools; but itlis also a great collaborative exercise. It can be
integrated into agile methods and adapt continuously as a
product evolves.

Implementation & Build

rt java.io.*;
ss UserPreferencesHandler {

ic void updateUserPreferences(String serializedData) {

try
ByteArrayInputStream byteStream = new ByteArrayInputStream(Base64.getDecoder().decode(serializedData));
ObjectInputStream objectStream = new ObjectInputStream(byteStream);
UserPreferences preferences = (UserPreferences) objectStream.readObject();

catch (IOException | ClassNotFoundException e
e.printStackTrace();

Viilriérable code example that contains multiple potentiatissues

Static scanning tools canbe highly-automated and integrated in CI/CD pipelines to ensure fast-butsecure deljvieries:
They are essential to provide:a:secure-by-default environment and turn DevOps into;DevSecOps:where teams can
deploy a secure product using-automated security.checks.in.the pipeline: They ustally detects.unvalidated user input,
outdated cryptographic functions;-plaintext passwords; insecure API calls and a lot of other types of vulnerahilities.

oot@trivy:-# trivy image python:3.4-alpine
022-03-17T09:39:38.6242 Need to update DB
022-03-17T09:39:38.6242
9.98 MiB / 29.98 MiB [
022-03-17T09:39:43.2562
022-03-17T09:39:43.2562
022-03-17709:39:43.2592
022-03-17T09:39:43.2592
022-03-17T09:39:43.2602
022-03-17T09:39:43.2602

JKCVE-2021-44228 Detail
MODIFIED

last analyzed by the NVD. Itis awaiting 1 h may resultin further changes to
ython:3.4-alpine (alpine 3.9.2)

: 16, HIGH: 13, CRITICAL: 4)

LIBRARY | VULNERABILITY ID | SEVERITY | INSTALLED VERSION | FIXED VERSION
+ H + d 2.3.1) JNDI fe:

expat | CVE-2018-20843 | 2.2.6-r0 2.2.7-r0

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

| cvE-2019-15903 |

Severity

CVSS 3.x Severity and Metrics:

+
libcryptol.l | CVE-2019-1543

\i) NIST:NVD Base Score: Vector: CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H

....................

|
|
|
|
|
1ibbz2 | cvE-2019-12900 | | 1.0.6-x6 1.0.6-x7
|
|
|
|
|
CVE-2020-1967 |
|

CVE entry for Log4j
Cantainer scanning result example

Scanning of containerimages, infrastructure as code descriptions and libraries (dependencies)-sighificantly
contributesto a better security-posture of the final product and is essential to manage 3rd party-risk«While only a low
percentage of Vulnerabilities might be'exploitable by attackers and further analysis is often needed-to'develop a
reasondbleremediation plan, scanning is the first step to achieve transparency of the security status'of the product and
product stack. Instead .of SAST'and depending on your development setup you might chose to tookinto tAST
(interactive-application securitytesting) as a way| to detect vulnerabilities during testing by instrumenting the
application:

2. Static Stanning

"The truth isiin the code"

A good plan needs even better
implementation. Static scanning
helps to ensure the implementation
does not contain security flaws. Static
scanning can be done

« on code level (SAST)

« on software dependencies (SCA)
 on container descriptions

» on infrastructure as code (IAC)

or even on binary artifacts.

Codescanning is an essential building
block in ensuring security in depth
throughout the software development
lifecycle. There is a variety of code
scanning tools on the market with
different strength and integration
capabilities that can help your
developers to code more securely
without losing too much timein
manual code reviews.

Codescanning detects violation from
secure coding best practices, identifies
vulnerabilities in dependencies,
insecure framework configurations,
ensures container images are free from
vulnerabilities and infrastructures stay
secure and compliant.

secure

3. Security Testing

"The Attacker's view" .

A final product needs to undergo
thorough security testing befor
to production. But to ensure thati
stays secure, it continuo'uslyx
be tested while in pro ct@-a
vulnerabilities and attack vectg
discovered and features g'iﬁ:tl

—

infrastructures change. —

— |'lI

Vulnerability scan ng and (
scanning tools treat applicz

(mostly) like black boxes, mi E ;] | [f’h \ '_ﬁ
an attacker's view and-can-run— = 00 i1 “ﬁ.\ | | e
._ X »

II.I'

!

—

continuously and automated. A . \ ._E-._ \
manual penetration testing activit r__ Lus\= -
adds an additional layer of security. | \

Skilled pentesters can discover logic |~ - i_f‘} C‘(\ G .
flaws, permission issues or hidden ' q"\ NG /
injection vectors thatautomated tools > e :
might miss. They also sort out fa [se : "*@% /;:f e ﬂrt __
i B % | o ~
positives. . ; Q% > p JiL -
While penetration testing takes time, NN Y _ , _ %
it is an additional layer that should be A O N o | ® "
part of every secure development’ o] ‘ S
lifecycle and heps to ensures \ ! 11|58 ' ; R (‘ / O
compliance to existing or emersin : ile dyna anning and penetration testing are only
P t & §ing . ‘ \\H-__ﬁ__ ieces e puzzle in application lifecycle security they
requirements, oF can also be a good starting point to uncover your current

s El l ' re ‘ 7\ = exposure and point to weaknessesin yoJr development

processes.

Strategy & Culture

Ready for a-global challenge?

Security has become a global challenge and there is no way not to be part of it. Are you
prepared or stitl unsure where you stand and what are the next steps in your journey?

Assess your product security program maturity using industry standards like OWASP
SAMM; BSIMM, DSOMM or tailored assessments for quick results. Create tactical'and
strategic roadmaps to mature your product security program based on your
organization’s business needs:.

We strongly believe that Security-needs to collabaoratively support your teams and your
business mission. To create a well anchored security program, you need to bring your
development teams and product owners-onboard; Establishing a security culture isan
essential building stone for your long-term business success.

To help bridge the gaps and respond to immediate requirements we can help out with our
360° application assessment incorporating security architecture reviewsy code assessments
and penetration testingto help you megt your application security requirements:

Monitor

Operate Build

Release

Example: Security maturity(blue) and planning (orange) depicted as spider diagram per DevOps phase

Test yourself

Our security culture is well established
and includes security champions,
knowledge sharing and community of
practices.

Our application and infrastructure is
designed according to best practices.
We have considered all relevant
potential attack vectors by
continuously threat modeling our
architecture.

We have clear perspective how
compliance requirements and
product security align and support
each other.

We have automated code and
implementation checks in our product
development lifecycle and CI/CD
pipelines with clear visibility and
remediation processes for development
teams and reporting to stakeholders.

We continuously check our exposure,
our applications and our infrastructure
from an attacker's perspective, monitor
for attacks and have established well
working incident response processes

We learn from past incidents, keep track
of new attack vectors and security best
practices for Cloud, Al, DevSecOps and
are continuously measuring and
optimizing our tools and processes.

secure

de

Dsecure-io

https:/lwww.linkedin.cw

-gmbh/

acureio

pany

s otherwise stated.

3
E
°2

£
(]
)

g

3

o

(3

w
m
o
o
~
<
=
»

5

o

o
v

