
Do component reduction strategies
fix your container security nightmares?

SECURE CONTAINERS

1



PRESENTERS

2

Michael Wager 

• Developer, Hacker, Consultant

• Topics: DevSecOps, Automated Security 

Assurance, Vulnerability Management

• Interested in music, traveling, cooking and 

all stuff cyber security related

Michael Helwig

• Strategic Consulting: Security Programs / SSDLC 

/ DevSecOps

• Interested in all things security (Security Testing,

Threat Modeling, Cloud, Reverse Engineering, …)

• Company founder



AGENDA

1. Intro: Container Security Challenge 

2. Component reduction methods ("distroless" concept)

3. Demo (Node.js)

4. Research & Comparison

5. Conclusion

3



WHY ARE CONTAINERS A SECURITY CHALLENGE?

Lack of processes in early adoption

Responsibility Shift (Shift-Left)

Complex attack surfaces

4

• Lack of transparency into vulnerabilites in early adoption phases
(no container scanning, no awareness, no CI/CD integration)

• No trusted repositories / base image selection
• Containers are everywhere (Cloud Services, vendor delivieries, …)

• Containers managed by dev teams; servers and OS traditionally managed by ops
team.

• "It's not our code"

• Application
• OS layer / container images
• Configuration
• Network
• Hypervisor

Security degrades over time • Security is not constant, new vulnerabilities and attack vectors appear. The 
more you have to maintain, the more effort you need.



5

CONTAINER SECURITY AND VULNERABILITY TRENDS

Source: https://sysdig.com/blog/2023-cloud-native-security-usage-report/

• High number of images with 
high or critical vulnerabilities

• Only a small number (2%) are 
exploitable but a large 
number is patchable

• Most of the vulnerable 
libraries are not actually used 
or needed by the application



WHY ARE CONTAINERS A SECURITY CHALLENGE?

6

"the likelihood of a greater number of vulnerabilities increases with 
the complexity of the software architectural design and code."

https://github.com/OWASP/DevGuide/blob/master/02-Design/01-Principles%20of%20Security%20Engineering.md

Minimize your attack surface



7

„IT‘S SECURE BECAUSE IT‘S 
RUNNING IN A CONTAINER“



8

„IT‘S SECURE BECAUSE IT‘S RUNNING IN A CONTAINER“

https://youtu.be/RMqjQ_i9eP0?si=AnCp9gWmIuLhia0s&t=227

https://youtu.be/RMqjQ_i9eP0?si=AnCp9gWmIuLhia0s&t=227


COMPARISON WITH OPEN SOURCE COMPONENTS

• Teams are responsible for the functionality and security of

OSS dependencies - so they are responsible for the security

of the selected base images

9

https://daniel.haxx.se/blog/wp-content/uploads/2021/04/xkcd-2347-curl-adjusted-by-tjost.png

https://daniel.haxx.se/blog/wp-content/uploads/2021/04/xkcd-2347-curl-adjusted-by-tjost.png


• Goal: identify known vulnerabilities (CVEs) in container images 

• Easy to integrate into CI/CD pipelines

Some tools: trivy, Anchore grype, docker scout, twistcli

10

CONTAINER IMAGE SCANNERS

https://cve.mitre.org/cve/
https://aquasecurity.github.io/trivy/v0.44/
https://github.com/anchore/grype
https://www.docker.com/products/docker-scout/
https://docs.paloaltonetworks.com/prisma/prisma-cloud/prisma-cloud-admin-compute/tools/twistcli_scan_images


Google "distroless"

• Open source project by google (since
2007)

• Provides prod ready images for
several runtimes (java, node.js, go)

• Very small in size (e.g. static-
debian11: ~2MB)

Ubuntu "chisel"

• Open source project by Canonical
(since 2023)

• Provides some prod ready images, 
others need to be built yourself
(„chiseled“)

• Ubuntu long-term supported (LTS) 
releases (0 critical 0 high findings, 
24h)

RedHat UBI "micro"

• Based on RedHat's "Universal base images"

• RedHat enterprise linux (RHEL) well
maintained

• Same security response team, the same 
security hardening

11

COMPONENT REDUCTION TOOLS

Chainguard images

• Security vendor founded in 2021

• Provides prod ready images for a lot
of popular runtimes (free & support)

• Hardened images with 0-known 
vulnerabilities

https://github.com/GoogleContainerTools/distroless
https://canonical.com/blog/combining-distroless-and-ubuntu-chiselled-containers
https://www.redhat.com/en/blog/introduction-ubi-micro
https://www.chainguard.dev/chainguard-images


Sourcecode available: github.com/mwager/nodejs_exploit

12

DEMO

http://github.com/mwager/nodejs_exploit


• Research in collaboration with University of Applied Sciences Augsburg

• 3 Research Questions:

• RQ1: Does the reduction of components significantly reduce the amount of

vulnerabilities within a container image?

• RQ2: Are typical vulnerabilities found through container security scanners

actually exploitable and therefore a risk to the application?

• RQ3: What are implications on development, deployment and maintenance

when introducing component reduction methods?

13

RESEARCH

https://www.hs-augsburg.de/


14

RESEARCH - RESULTS



• Minimal images containing only runtime environment and the

application (no shells, no package managers, etc)

• Reduced attack surface

• Less findings of security scanners

• Removes entire classes of attacks

• Faster transfer times, less storage size, resource efficiency => less

costs

• Faster build times

17

ADVANTAGES



• Complexity 
Requires deep understanding of all underlying systems, from user i/o to 
kernel namespace, docker internals etc

• Compatibility Issues
Some applications may rely on specific features or libraries that are 
missing in distroless containers

• Debugging / No shell access 
If your application needs to execute system commands, Distroless won’t 
work. (Chainguard/Alpine does!)

• No support for certain runtimes
Google Distroless does not support PHP out of the box, but chainguard 
does.

18

DISADVANTAGES & CHALLENGES

https://i.imgflip.com/5dq5my.jpg

https://i.imgflip.com/5dq5my.jpg


• Teams are responsible for the selection and security assurance of their base images

(same as with their source code and open source dependencies)

• Distroless methods make your apps more secure (scientifically proved)

• Recommendations

• Use Google distroless or chainguard images (or Alpine if possible)

• Scan your images (fail your build!)

• Do not build your images as root!

• Create awareness / establish community

@michael_wager
@c0dmtr1x

www.secure-io.de

Contact

Twitter:

20

CONCLUSION

https://twitter.com/michael_wager

