SECURE CONTAINERS

Do component reduction strategies

\
l
l||'' fix your container security nightmares? ‘
|

secureld

PRESENTERS

Michael Wager

* Developer, Hacker, Consultant

* Topics: DevSecOps, Automated Security
Assurance, Vulnerability Management

* Interested in music, traveling, cooking and

all stuff cyber security related

Michael Helwig

» Strategic Consulting: Security Programs / SSDLC
/ DevSecOps

* Interested in all things security (Security Testing,
Threat Modeling, Cloud, Reverse Engineering, ...)

 Company founder

11—

,—‘" g a.i:

AGENDA

1. Intro: Container Security Challenge

2. Component reduction methods ("distroless" concept)
3. Demo (Node.js)

4. Research & Comparison

5. Conclusion

Lack of processes in early adoption

Responsibility Shift (Shift-Left)

Complex attack surfaces

Security degrades over time

Lack of transparency into vulnerabilites in early adoption phases
(no container scanning, no awareness, no CI/CD integration)

No trusted repositories / base image selection
Containers are everywhere (Cloud Services, vendor delivieries, ...)

Containers managed by dev teams; servers and OS traditionally managed by ops
team.
"It's not our code"

Application

OS layer / container images
Configuration

Network

Hypervisor

Security is not constant, new vulnerabilities and attack vectors appear. The
more you have to maintain, the more effort you need.

securelO

{

LU f

CONTAINER SECURITY AND VULNE

o ngh number Of images W|th 13% Critical or high vulnerabilities in packages 100%
high or critical vulnerabilities of images have of images have g Emvoaf"a:t':hed T
high or critical low, medium or :
vulnerabilities no vulnerabilities
* Only a small number (2%) are I
2% + Exploitable

exploitable but a large
number is patchable

i . Non-OS vulnerabilities by severity N
OS vulnerabilities by severity
* Most of the vulnerable
libraries are not actually used
or needed by the application ~ rishon Low and e p
97% 48%

Source: https://sysdig.com/blog/2023-cloud-native-security-usage-report/

a 'l { ‘
3 ¢ ¥ A i {

1 q BB
i : ’ g

," 4_ sﬂ"

WHY ARE CONTAINERS A SECU RITY CHALLENGE’-’

"the likelihood of a greater number of vulnerabilities increases with
the complexity of the software architectural design and code."

Minimize your attack surface

https://github.com/OWASP/DevGuide/blob/master/02-Design/01-Principles%200f%20Security%20Engineering.md

= == s R | |
2 B R e e he e
o e S

I ——

,IT'S SECURE BECAUSE IT'S
RUNNING IN A CONTAINER”

| =1 RERiL securel0
"} RERRL |
| 1 T 1L —

£ o J(dr' o

=

IT‘S SECURE BECAUSE IT‘S RUNNING IN A

https://youtu.be/RMgjQ i9eP0?si=AnCp9gWmluLhiaOs&t=227

https://youtu.be/RMqjQ_i9eP0?si=AnCp9gWmIuLhia0s&t=227

1

COMPARISON WITH OPEN SOURCE C

.

s

MPONEN

e

securel0 ”“m"" i q ,

ALL MODERN DIGITAL
INF R%IEUCTURE

-

I

N

i

A PROJECT SOME
RANDOM PERSON

IN NEBRASKA HAS
BEEN THANKLESSLY

MAINTAINING
SINCE. 2003

=

s

E

-

—

https://daniel.haxx.se/blog/wp-content/uploads/2021/04/xkcd-2347-curl-adjusted-by-tjost.png

Teams are responsible for the functionality and security of
OSS dependencies - so they are responsible for the security

of the selected base images

https://daniel.haxx.se/blog/wp-content/uploads/2021/04/xkcd-2347-curl-adjusted-by-tjost.png

: ;' | ‘ ‘ I’llJ’ ' | ‘ ’ "“ "' |
a AEER | 1i 0 B r i
1 e talebird | ‘ IEERRNE R

CONTAINER IMAGE SCANNERS

* Goal: identify known vulnerabilities (CVEs) in container images

» Easy to integrate into CI/CD pipelines

Some tools: trivy, Anchore arype, docker scout, twistcli

10

https://cve.mitre.org/cve/
https://aquasecurity.github.io/trivy/v0.44/
https://github.com/anchore/grype
https://www.docker.com/products/docker-scout/
https://docs.paloaltonetworks.com/prisma/prisma-cloud/prisma-cloud-admin-compute/tools/twistcli_scan_images

AL

COMPONENT REDUCTION TOOLS

Google "distroless" RedHat UBI "micro"
* Open source project by google (since * Based on RedHat's "Universal base images"
2007)

* RedHat enterprise linux (RHEL) well
* Provides prod ready images for maintained

several runtimes (java, node.js, go)
e Same security response team, the same

* Very small in size (e.g. static- security hardening
debianl1: ~2MB)

Ubuntu "chisel"
Chainguard images

* Open source project by Canonical

(since 2023) * Security vendor founded in 2021
* Provides some prod ready images, * Provides prod ready images for a lot
others need to be built yourself of popular runtimes (free & support)

(,,chiseled”)
* Hardened images with 0-known

* Ubuntu long-term supported (LTS) vulnerabilities
releases (O critical 0 high findings,
B 24h)

https://github.com/GoogleContainerTools/distroless
https://canonical.com/blog/combining-distroless-and-ubuntu-chiselled-containers
https://www.redhat.com/en/blog/introduction-ubi-micro
https://www.chainguard.dev/chainguard-images

secureld I
|

e ee e R T

When it's demo day and you
have to present:

Demo day is such fun

Sourcecode available: github.com/mwager/nodejs_exploit

12

http://github.com/mwager/nodejs_exploit

{11 | II""“I'\, securelO

= S

RESEARCH

e Research in collaboration with University of Applied Sciences Augsburg

e 3 Research Questions: Hochschule

* RQ1: Does the reduction of components significantly reduce the amount of Augsburg University of
Applied Sciences

vulnerabilities within a container image?
 RQ2: Are typical vulnerabilities found through container security scanners

actually exploitable and therefore a risk to the application?

* RQ3: What are implications on development, deployment and maintenance

when introducing component reduction methods?

13

https://www.hs-augsburg.de/

RESEARCH - RESULTS

Image total | critical | high | medium | low
alpine_ latest:latest 0 0 0 0 0
amazonlinux_ 2:latest 15 1 7 7 0
chainguard-jre_latest:latest 0 0 0 0 0 40
chainguard-node_ latest:latest 0 0 0 0 0
chainguard-php_ latest:latest 0 0 0 0 0 35
chainguard-python_ latest:latest 0 0 0 0 0
chainguard-wolfi-base:latest 0 0 0 0 0 30
chiselled-base 22.04:latest 0 0 0 0 0
distroless-base-debian12:latest 3 0 0 0 3 —_
))) ° 25
distroless-java-base-debian12:latest 2 0 0 0 2 »
distroless-javall-debianll:latest 9 0 0 0 9 ;C:
distroless-javal7-debian12:latest 2 0 0 0 2) 20
distroless-nodejs18-debianl2:latest 4 0 0 0 4 2
distroless-nodejs20-debian12:]atest 4 0 0 0 4 o 15
distroless-python3-debian12:latest 9 0 0 1 8
distroless-static-debian12:latest 0 0 0 0 0 10
ibmjava__jre:latest 12 0 1 3 8
node_ 14-slim:latest 37 2 6 4 25 5
node_ 16-slim:latest 31 1 3 2 25
node_18-slim:latest 8 0 0 2 6 | . |
DR 0 — S——
node_18.14.1-alpine:latest B |1 5 7 0 0000000000000 NO0N0N0NON0N0NNN0NNOO0N0N0NNO0ON0ON
le 20-alpine:latest 0 0 0 0 0 L < o M- G ol i A i S -G 4 < - < <ol e ol T < il i <
node_20-alpinelates MAmMAAAAAA AR AR AAAAAAAAAAAAARARA RN RM M
node_ 20-slim:latest 8 0 0 2 6 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
- . 8893888888 33888 883388838 3RRRS8 2288
php_fpubusterlatest SR I O O e GRUOUN RO ORNRUREENNNNOO WU ENNWE W NN
php_ latest:latest 14 0 0 2 12 BENABENFHFBWWNWABWHROHOBABBRBWNNNWOONNWWESM4M-BL
. . . OCNOONSE WO AUV WWWUOMHMHOOONODOOON WO OO ®
piotrkardasz-php-distroless_ 8.1-debug | 178 | 9 29 90 50 FOWWUFUODOOOUNOOOWONNOUVMOUMOODWOOVUHFONO OUL WM
HBAEONUVVUMOOIOWOOAUVAE WO HUDAONOOVORADONDO O WO D
redhat-ubi8-ubi-micro:latest 0 0 0 0 0 w N o &~ oo wa o NNNO B
redhat-ubi8-ubi-minimal:latest 32 0 3 14 15
CVEs (total: 563
redhat-ubi9-openjdk-11-runtime:latest | 71 0 5 45 21 ()
redhat-ubi9-openjdk-17-runtime:latest | 70 0 5 44 21
ubuntu-jre_17-22.04__edge:latest 0 0 0 0 0 5 o - 5 3 N ST
ubuntu.jre_8-22.04_edge-latest 0 0 o o 0 Figure 13: EPSS exploitation probability over found vulnerabilities

14

Table 2: All scanned images and their vulnerability distribution

HTHIT “"!\

!i

S
——

|

ADVANTAGES

* Minimal images containing only runtime environment and the

application (no shells, no package managers, etc)

e Reduced attack surface

* Less findings of security scanners

* Removes entire classes of attacks

* Faster transfer times, less storage size, resource efficiency => less
costs

* Faster build times

17

1
]
¢

A a i1l
| | |) ' Q
{ 1 1)

DISADVANTAGES & CHALLENGES

« Complexity
Requires deep understanding of all underlying systems, from user i/o to
kernel namespace, docker internals etc

« Compatibility Issues
Some applications may rely on specific features or libraries that are
missing in distroless containers

 Debugging / No shell access
If your application needs to execute system commands, Distroless won't
work. (Chainguard/Alpine does!)

* No support for certain runtimes
Google Distroless does not support PHP out of the box, but chainguard
does.

https://i.imgflip.com/5dg5my.jpg

18

https://i.imgflip.com/5dq5my.jpg

20

CONCLUSION

 Teams are responsible for the selection and security assurance of their base images

(same as with their source code and open source dependencies)

* Distroless methods make your apps more secure (scientifically proved)

e Recommendations

* Use Google distroless or chainguard images (or Alpine if possible)
* Scan your images (fail your build!)
* Do not build your images as root!

* Create awareness / establish community

Contact

Twitter:
@michael wager
@cO0dmtrlx

www.secure-io.de

https://twitter.com/michael_wager

